Vai al contenuto principale

Department of Mathematics "Giuseppe Peano"

# Laurea Magistrale (M.Sc.) in Stochastics and Data Science

Oggetto:
Oggetto:

Oggetto:

## Programming for data science

Oggetto:

Course ID
MAT0036
Teacher
Prof. Marco Beccuti
Year
1st year
Teaching period
First semester
Type
D.M. 270 TAF F - Other activities
Credits/Recognition
3
Course disciplinary sector (SSD)
INF/01 - informatics
Delivery
Blended
Language
English
Attendance
Mandatory
Type of examination
Mixed
Prerequisites
Basic knowledge in Calculus as provided by the first year Mathematics course.
No specific computer science knowledge is required.
Oggetto:

Oggetto:

## Course objectives

Aim of the course is to introduce methods, techniques and related computer science instruments for the analysis of experimental data.

It  provides the basic knowledge to use   programming languages  for statistical computing and graphics (e.g. R programming language)

Oggetto:

## Results of learning outcomes

KNOWLEDGE AND UNDERSTANDING – Completing the course students will be able to:

1) use suitable descriptive and inferential statistics techniques to describe and understand the phenomena being studied;

2) manage suitable computer science instruments such as worksheet or dedicated software programs for statistical data analysis.

APPLYING KNOWLEDGE AND UNDERSTANDING – Students will perform the statistical analyses required by the problem under study by selecting the most computationally and graphically suitable computer science support.

MAKING JUDGEMENTS – Students will decide which statistical techniques to use according to the available data sets to describe and understand the phenomena under consideration.

COMMUNICATION – The student will be able to justify the choices for the analysis to be performed and to give a synthetic description of the techniques employed and of the results obtained.

Oggetto:

## Program

• `Introduction to Data science;`
• `Visualization using ggplot2;`
• `Basic R functionalities:`
• `Data structures:  vector, matrix, list and data frame, tibble;`
• `Apply operators;`
• `Input/output operator;`
• `Package and library.`
• `Tidy data in R`
• `Data Transformation;`
• `Programming with R:`
• `Function;`
• `Flow control: if,for, while, break ... statements;`
• `Debugging in R.`
• `Creation of package in R`
Oggetto:

## Course delivery

The course consists of  10 hours of lectures, and 14 hours of laboratories . Laboratories  include exclusively practical activities.

The slides presented during lectures are available to students as online materials.

Attendance to lessons is not mandatory, but highly recommended due to the necessity of learning and employing specific computer science instruments.

Oggetto:

## Learning assessment methods

During the Covid-19 emergency the learning assessment method will consist in a written exam with video surveillance on Webex.

The exam consists of a written test and requires a practice exercise on R  programming languages

WRITTEN EXAMINATION:

-  ten multiple choice questions on course topics (4 options, with the possibility of 0-4 correct options);

- a practice exercise on  R programming languages

The maximum possible score is 30 cum laude, where the maximum score for the first part is 3 points, while the maximum score for the second part is  28 points.

Oggetto:

- Garrett Grolemund and Hadley Wickham, R for Data Science, O'Reilly Media, Inc, USA, 2017.

- P. Dalgaard, Introductory Statistics with R, Springer 2008

- The R Manuals: An Introduction to R (http://cran.r-project.org/doc/manuals/r-releas /Rintro.pdf)

The teaching material used for lessons and a series of practical exercises are available on the web site of the course.

Oggetto:

Oggetto:

## Class schedule

Enroll
• Closed
Enrollment opening date
01/09/2021 at 00:00
Enrollment closing date
30/06/2022 at 00:00
Oggetto:
Last update: 11/07/2022 15:34